
Emotions to Control Agent Deliberation∗

Bas R. Steunebrink
Department of ICS,

Intelligent Systems Group,
Utrecht University
bass@cs.uu.nl

Mehdi Dastani
Department of ICS,

Intelligent Systems Group,
Utrecht University

mehdi@cs.uu.nl

John-Jules Ch. Meyer
Department of ICS,

Intelligent Systems Group,
Utrecht University

jj@cs.uu.nl

ABSTRACT
The execution of an artificial agent is usually implemented with
a sense–reason–act cycle. This cycle includes tasks such as event
processing, generating and revising plans, and selecting actions to
execute. However, there are typically many choices in the design of
such a cycle, which are often hard-coded in the cycle in an ad hoc
way. The question of this paper is how one decides, in a principled
way, how often and which reasoning rules to apply, how to inter-
leave the execution of plans, or when to start replanning. This paper
proposes and formalizes the eliciting conditions of hope, fear, joy,
and distress according to a well-known psychological model of hu-
man emotion. These conditions are then used to reduce the choices
an agent can make in each state. They formalize the idea that emo-
tions focus an agent’s attention on what is important in each state.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Miscellaneous

General Terms
Theory

Keywords
Agent programming languages, Emotions

1. INTRODUCTION
Artificial agents are often implemented by means of a sense–

reason–act cycle. The sense–reason–act cycle is based on the idea
that, in order to decide which action(s) to execute, an agent must
reason about its knowledge of its environment and its goals; and
in order to keep its knowledge of its environment actual, it must
use its sensing capabilities to update its knowledge. Although this
general idea may seem quite sensible, actually implementing such a
sense–reason–act cycle forces one to make a lot of design choices,
many of which are not trivial. For example, at any particular time,
an agent may have the option to generate new plans for its goals,
to revise existing plans, and to execute a previously generated plan.

∗This work is supported by SenterNovem, Dutch Companion
project grant nr: IS053013.

Cite as: Emotions to Control Agent Deliberation, Bas R. Steunebrink,
Mehdi Dastani and John-Jules Ch. Meyer, Proc. of 9th Int. Conf. on
Autonomous Agents and Multiagent Systems (AAMAS 2010), van
der Hoek, Kaminka, Lespérance, Luck and Sen (eds.), May, 10–14, 2010,
Toronto, Canada, pp.�
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

But based on what principles does one decide when and which plan
to generate, revise, or execute?

In the most general sense–reason–act cycle, all such decisions
are left unspecified, and so all choices are made nondeterministi-
cally. For example, if a plan can be revised according to three dif-
ferent procedures, the procedure to apply is chosen nondetermin-
istically. But there exist many agent programming languages that
implement the deliberation of agents by means of some form of
sense–reason–act cycle, for example 2APL [5], GOAL [11], Jason
[2], Jadex [17], and Jack [20]. These agent implementations do not
actually choose nondeterministically, but often make use of ad hoc
rules for breaking ties. For example, in 2APL reasoning rules are
always tried in the order in which they appear in the agent program,
even though its formal semantics leave this to nondeterminism. The
main question of this paper is then how one can specify, in a prin-
cipled way, a sense–reason–act cycle that reduces nondeterminism
without resorting to ad hoc decisions.

The approach taken in this paper is to look at psychological mod-
els of human emotions for ways in which agent deliberation can be
controlled. According to psychological literature, emotions func-
tion as a feedback mechanism with respect to one’s performance.
Particularly in task-oriented situations, positive and negative emo-
tions function as signals for continuing or halting current inclina-
tions, respectively. In this paper we investigate how emotions can
be used to specify constraints on an agent’s sense–reason–act cycle;
these constraints then reduce nondeterminism in a principled way.

Our approach is to take a slightly simplified version 2APL [5]
and strip its sense–reason–act cycle down to the point where it is
completely general and nondeterministic. We then take four emo-
tion types (i.e., hope, fear, joy, distress) from a well-known psy-
chological model (i.e., the “OCC model”) and for each emotion
type we formally specify a constraint corresponding to that emo-
tion type. The hope-based constraints turns out to closely match
one of the ad hoc choices used in 2APL, whereas the fear-based
constraint differs from the corresponding ad hoc choice used in
2APL. The joy-based and distress-based constraints, however, in-
troduce entirely new dynamics. Although in the end there is still
nondeterminism, this can be further reduced by introducing more
principled, possibly emotion-inspired, constraints.

This paper is structured as follows. In section 2 we present the
semantics of a slightly simplified 2APL and illustrate the nonde-
terminism involved in its sense–reason–act cycle. Section 3 then
introduces a formalization of emotion triggers grounded in 2APL.
Section 4 then presents the constraints based on the emotion types
hope, fear, joy, and distress. Some related work is discussed in
section 5. Proofs of propositions can be found in appendix A.

973

973-980

2. A PRACTICAL AGENT
PROGRAMMING LANGUAGE

In this section we illustrate the choices that have to be made
when designing the sense–reason–act cycle of a BDI agent. To
this end, we will define the semantics of a simple agent. These se-
mantics are based on 2APL [5] (“A Practical Agent Programming
Language”), but the message of this paper extends to any BDI agent
programming language that is based on beliefs, declarative goals,
and reasoning rules. Such programming languages include GOAL
[11], Jason [2], Jadex [17], and Jack [20]. Although 2APL is a plat-
form for programming multi-agent system, we will only consider
the single-agent case in this paper. Also, we will not be concerned
with the external environment in which the agent might ‘live’ and
therefore leave this out of our formalization for simplicity.

In 2APL, an agent is programmed in terms of beliefs, declara-
tive goals, plans, and two kinds of reasoning rules: plan generation
(PG) rules and plan revision (PR) rules. The analysis of 2APL pre-
sented in this paper is purely semantic; the exact syntax of 2APL
programs is not of concern here and can be found elsewhere [5].
On the semantic level, then, an agent is represented as a configura-
tion containing data structures for storing beliefs, goals, plan, and
reasoning rules. This configuration is changed by the execution of
actions; the precise effects of actions on a configuration is specified
using transition rules.

DEFINITION 1. An agent configuration is a tuple
〈i, B,G, P,PG,PR〉, where i is the agent name, B is the belief
base, G is the goal base, P is the plan base, PG is the set of plan
generation rules, and PR is the set of plan revision rules.

We will typically use the symbol C to refer to an agent config-
uration. It should be noted that during the execution of an agent,
only its beliefs, goals, and plans can change. So an agent’s name
and reasoning rules are static. Beliefs and goals have the following
form.

DEFINITION 2. Let L be a set of well-formed formulas, built as
usual by induction from a set of atomic propositions ATM and the
usual propositional connectives. The set of all possible belief bases
is Σ = {σ ⊆ L | σ �PC ⊥} and the set of all possible goal bases
is Γ = 2K. Goal formulas are thus drawn form the set K, which is
the set of conjunctions of atomic propositions, defined as follows:

K = {
∧

X | ∅ ⊂ X ⊆ ATM } (1)

K = {
∧

X | ∅ ⊂ X ⊆ ATM } (2)

where ATM = {¬p | p ∈ ATM }. The set K of conjunctions
of negated propositions will be useful for representing unachieved
goals. The following typical elements are used: κ ∈ K, κ ∈ K,
and β ∈ L.

It is thus assumed for each configuration that B ∈ Σ and G ∈ Γ.
So an agent’s belief base is assumed to be consistent, and the goals
of an agent are assumed to be specified as conjunctions of atomic
propositions. With slight abuse of notation, we use the ‘overline’
to convert from K to K and vice versa. So we have that K = {κ |
κ ∈ K} and that κ = κ. In the following it will be useful to be able
to talk about subgoals of goals. This notion is formalized using the
following relation.

DEFINITION 3. The subset relation
 on K is defined as:

 = { (
∧

X,
∧

Y) | ∅ ⊂ X ⊆ Y ⊆ ATM } (3)

So κ′
 κ iff the conjuncts comprising κ′ are a non-empty sub-
set of those comprising κ. Normally, we will use this relation when
κ is a goal; in that case κ′
 κ expresses that κ′ is a subgoal of κ.

Belief bases and goal bases can be queried as follows.

DEFINITION 4. A belief base is queried using the relation |=b

⊆ Σ×L and a goal base is queried using the relation |=g ⊆ Γ×K.
|=b and |=g are specified as:

B |=b β ⇔ B �PC β (4)
G |=g κ ⇔ ∃γ ∈ G : κ
 γ (5)

Note that a closed world assumption is used with respect to be-
liefs; for each formula, either the formula or its negation follows
from the belief base. A (sub)goal κ is said to have been achieved
if it follows from the belief base, i.e., B |=b κ. It is assumed that
goals are removed as soon as they have been achieved, i.e., γ ∈ G
implies B |=b ¬γ.

A plan base P consists of plan–(sub)goal–rule triples. For exam-
ple, (π, κ, r) ∈ P means that the agent is committed to performing
plan π in order to achieve (sub)goal κ, and that π was obtained by
applying rule r. Plans may consist of belief queries, belief updates,
external actions (such as sending a message and sensing and ma-
nipulating the environment, but we will not go into this any further
here), if–then–else and while–do constructs, and sequential com-
positions of actions. It is assumed that plans are removed as soon
as the associated goal has been achieved or has become irrelevant,
i.e., (π, κ, r) ∈ P implies B |=b ¬κ and G |=g κ.

PG-rules are of the form κ | β → π, which specifies that if the
agent believes β to be the case, then it can perform plan π to achieve
(sub)goal κ. PR-rules are of the form π′ | β → π, which specifies
that if the agent believes β to be the case, then it can rewrite (re-
place) π′ by plan π. In the following, we will call κ respectively π′

the head of the rule, β the guard (belief condition) of the rule, and
π the plan of the rule. We will use three accessors for rules: H(r)
denotes the head of rule r (i.e. κ or π′), G(r) denotes the guard of
rule r (i.e. β), and P(r) denotes the plan of rule r (i.e. π).

DEFINITION 5. A PG-rule r = (κ | β → π) is applicable with
respect to a configuration C = 〈i, B,G, P,PG,PR〉 iff the head of
the rule (κ) follows from the goal base (G) but not from the belief
base (B) and the guard of the rule (β) follows from the belief base.
This is abbreviated as follows:

ApplicableC(r)
def
= r ∈ PG & G |=g κ & B |=b (β ∧ ¬κ) (6)

Similarly, a PR-rule r = (π′ | β → π) is applicable to a plan π′′

iff π′′ is in the plan base, the head of the rule (π′) is unifiable with
π′′, and the guard of the rule follows from the belief base. This is
abbreviated as follows:

ApplicableC(r, π
′′) def

= r ∈ PR & ∃κ′, r′ : (π′′, κ′, r′) ∈ P

& Unifiable(π′, π′′) & B |=b β (7)

In 2APL, the head π′ and plan π of a PR-rule π′ | β → π can
contain variables to allow PR-rules to be applied to many different
instances of plans. However, we cannot go into the definition of
Unifiable without considering the syntax of plans in 2APL. There-
fore we simply assume a suitable definition of Unifiable such that
it indicates whether or not two plans match. The interested reader
can find a proper specification of plan unification in [5].

We will now specify the effects of applying a PG-rule or PR-rule.
For the application of PG-rule r we specify the meta-action Gen(r)
(“generate”), and for the application of PR-rule r′ we specify the

974

meta-action Rev(r′) (“revise”). These are meta-actions because
they are part of the sense–reason–act cycle of an agent. Gen and
Rev cannot appear in the plans of an agent; they are only used in
specifying the execution of the agent’s deliberation cycle.

If a PG-rule r is applied, the triple (P(r),H(r), r) is added to
the plan base P . If a PR-rule r is applied to (π, κ, r′) ∈ P , the
triple (π, κ, r′) is replaced by (P(r), κ, r) in the plan base P . But
of course a rule can only be applied if it is applicable (in the sense of
Definition 5). The meta-actions Gen(r) and Rev(r) are specified
using transition semantics, as follows:

ApplicableC(r)

C Gen(r)
=⇒ C′

∃π : ApplicableC(r, π)

C Rev(r)
=⇒ C′′

(8)

The plan base of configuration C′ is P ′ = P ∪ {(P(r),H(r), r)}.
The plan base of configuration C′′ is P ′′ = (P \ {(π, κ, r′)}) ∪
{(P(r), κ, r)}.

We will use a third meta-action which specifies the execution of
a plan of an agent. This meta-action is denoted as Do(π) and is
specified with the following transition rule:

C α−→ C′′′

C Do(π)
=⇒ C′′′

(9)

where α is the first action of plan π, i.e., π = α;π′ for some (possi-
bly empty) π′. So the meta-action Do only executes the first action
of the provided plan. This allows plans to be interleaved if the plan
base contains more than one plan. C α−→ C′′′ means that configu-
ration C can make a ‘normal’ transition to C′′′ by performing action
α. Here we will not go into the transition rules for actions that can
be performed by an agent; for 2APL all such transition rules can
be found in [5]. These transition rules typically include a condi-
tion to ensure that the plan being executed (i.e., π) is in the plan
base and that the goal associated with the plan is still relevant (e.g.,
∃κ, r : (π, κ, r) ∈ P & G |=g κ & B |=b ¬κ). Note that the
meta-action for executing a plan only executes one action at the
time, i.e., plans are not assumed to be atomic so this meta-action
will have to be performed repeatedly to finish a plan.

We now have sufficient ingredients to illustrate that a sense–
reason–act cycle typically contains many choice points. In the
following, we use notation as is common in Dynamic Logic, i.e.,
‘;’ denotes sequential composition, ‘∗’ denotes repetition (execute
zero or more times), and ‘+’ denotes nondeterministic choice. A
complete sense–reason–act cycle is then denoted as
(Sense;Reason_Act)∗, where Sense is a meta-action that senses
the environment and updates the belief base and goal base accord-
ingly. Although sensing is an essential part of any sense–reason–act
cycle, we will focus on the reasoning and acting part in the rest of
this paper. The reasoning and acting of an agent can be described
using the meta-actions introduced above, as follows.

DEFINITION 6. The ‘reason’ and ‘act’ part of a sense–reason–
act cycle is defined in its most general form as follows:

Reason_Act def
= ApplyPGrule∗;ApplyPRrule∗;ExecutePlan∗

ApplyPGrule
def
= Gen(pg1) + · · ·+Gen(pgn)

ApplyPRrule
def
= Rev(pr1) + · · ·+ Rev(prm)

ExecutePlan
def
= Do(π1) + · · ·+Do(πk)

where PG = {pg1, . . . , pgn}, PR = {pr1, . . . , prm}, and P =
{(π1, κ1, r1), . . . , (πk, κk, rk)}.

So with respect to reasoning and acting, the agent can do three
kinds of things: apply PG-rules, apply PR-rules, and execute plans.

The above specification is completely general: all these meta-actions
can be done in any particular order; all choices are nondeterminis-
tic; there is no commitment to any particular order of execution of
the presented meta-actions.

Of course choices have to be made when implementing an agent
programming language. For example, in 2APL, PG-rules are tried
and applied in the order in which they appear in the source code of
the agent program; PR-rules are only applied when execution of a
plan fails; and plans are interleaved if there is more than one in the
plan base. Although seemingly reasonable choices, they remain ad
hoc choices. It will be clear that, among the many different ways
of designing a sense–reason–act cycle, some will be better than
others. For example, constantly checking each PG-rule and each
PR-rule for applicability after performing a single atomic action
will obviously yield a very inefficient agent. But how does one
decide, in a principled way, how to choose between generating,
revising, and executing plans? In the next section we propose to
use emotions as such design principles.

3. A FORMALIZATION OF
EMOTION TRIGGERS

There is little consensus among psychologists as to what exactly
constitutes an emotion and how it differs from related affective pro-
cesses such as moods and impulses. However, this does not mean
that making broad classifications is impossible or useless. Accord-
ing to a classification by Gross [10], emotions typically have spe-
cific objects and give rise to action tendencies relevant to these ob-
jects. Moreover, emotions can be both positive and negative. Emo-
tions are often distinguished from moods, which are more diffuse
and last longer than emotions. Other affective processes include
stress, which arises in taxing circumstances and produces only neg-
ative responses; and impulses, which are related to hunger, sex, and
pain and give rise to responses with limited flexibility. Of these four
types of affective processes, we focus on emotions in this paper.

With respect to emotions, usually three phases are distinguished.
First, the perceived situation is appraised by an individual based on
what he or she thinks is relevant and important. For example, Al-
ice, who likes receiving presents, is given a necklace by Bob. Alice
then judges receiving the necklace as desirable and Bob’s action as
praiseworthy. Consequently, the appraisal of this action and its out-
come causes gratitude towards Bob to be triggered for Alice. Note
that different types of emotions may be triggered simultaneously by
the same situation, some of which may even be seen as conflicting.
For example, Alice may at the same time be disappointed because
it was not the necklace she had hoped to receive. Emotion theories
dealing with appraisal are for example [8, 16, 13, 14, 18]. Second,
the appraisal of some situation can cause the triggered emotions, if
exceeding some threshold, to create a conscious awareness of emo-
tional feelings, leading to the experience of having emotions. For
example, Alice’s gratitude towards Bob will have a certain intensity
and will probably decrease over a certain amount of time. All this
may depend on, e.g., the degree of desirability of receiving a neck-
lace and Alice’s previous attitude towards Bob. Emotion theories
dealing with these quantitative aspects of emotions are for example
[16, 8, 7]. Third, emotional feelings need to be regulated. For ex-
ample, Alice may want to organize her behavior such that positive
emotions are triggered as often as possible and negative emotions
are avoided or drowned by positive ones. She could do this by be-
ing nice to Bob so that he will give her more presents, or avoiding
him altogether so that she will never again be confronted with his
bad taste in jewelry. In fact, some emotion theories posit that the
main purpose of emotions is to function as a heuristical mechanism

975

for selecting behaviors [4, 14, 13]. Emotion theories dealing with
behavioral consequences of emotions are for example [8, 7, 12, 14].

This section presents a formalization of the eliciting conditions
of four emotion types (‘hope’, ‘fear’, ‘joy’, ‘distress’) as described
in the psychological model of Ortony, Clore & Collins [16]. We
have chosen the “OCC model” because it provides a clear classi-
fication of emotion types, it lists concise descriptions of the con-
ditions that elicit emotions, and for this it uses concepts that are
well studied and relatively straightforward to formalize. The pre-
sented formalization constitutes a formal model for the appraisal
part of the OCC emotion theory. Here we translate the conditions
that trigger ‘hope’, ‘fear’, ‘joy’, and ‘distress’ into concepts that are
used in agent programming and in 2APL in particular, thus formal-
izing the appraisal process corresponding to these emotion types. It
should be noted beforehand that we use these emotion types only as
convenient labels to describe particular cognitive states of an agent.
No representation of emotions will be stored in the agent configu-
ration; consequently, we will not be concerned with issues such as
whether or not an agent subjectively experiences an emotion. In
this paper emotion models are only used to inform the design of a
sense–reason–act cycle in a principled way.

The OCC model specifies eliciting conditions of ‘joy’ as “pleased
about a desirable event” and ‘distress’ as “displeased about an un-
desirable event.” On the other hand, ‘hope’ is specified as “pleased
about the prospect of a desirable event” and ‘fear’ as “displeased
about the prospect of an undesirable event.”1 It may appear that
the specifications of hope and fear subsume those of joy and dis-
tress, e.g., that hope is a special kind of joy, namely one concern-
ing a prospect. However, personal communication with Ortony
and Clore has revealed that this is not the intended reading [15].
The specifications of joy and distress assume a default disregard of
prospects. In the following, we will call an event ‘actual’ if it is
not prospective. Note that ‘actual’ only applies to an agent’s per-
ceptions; as soon as (a consequence of) an event is perceived, it
is called ‘actual’, even though the event may have occurred some
time in the past. The specifications of joy and distress may then be
read as “(dis)pleased about an actual (un)desirable event.”

Both joy/distress and hope/fear actually do subsume another type
of emotions, namely ‘pleased’ and ‘displeased’. These two have
been chosen by OCC to function as labels for the most general type
of valenced reactions to consequences of events, because they are
neutral sounding words with respect to intensity of experience, fo-
cus of attention, motivational and behavioral effects, etc. Here we
use pleased/displeased to compose our formalization of the spec-
ifications of hope/fear and joy/distress, as shown in Definition 7.
In the following, we will not be concerned with the emotion types
‘pleased’ and ‘displeased’, except in using them to formalize ‘hope’,
‘fear’, ‘joy’, and ‘distress’ in accordance with the OCC model.

Below is a BDI-based formalization of hope, fear, joy, and dis-
tress, and their constituent constructs. This formalization concerns
the eliciting conditions of these four emotion types; this means that
they express the moments at which hope, fear, joy, or distress are
triggered. For example, HopeTi (ϕ) is read as “hope about conse-
quence ϕ (of an event) is triggered for agent i.” It is important to
note that this is not the same as “agent i hopes ϕ will happen.” The
latter phrase expresses a kind of experience of the feeling of hope.
In the formalization below, we use a superscript “T” as a constant
reminder that all that is expressed is the satisfaction of the condi-
tions that can trigger an emotion, regardless of whether the emotion
in question actually is or ever will be experienced.

1Events are always appraised with respect to their consequences,
so each instance of the phrase “(un)desirable event” is actually an
abbreviation of “(un)desirable consequence of an event” [15].

DEFINITION 7. Let ϕ be a typical formula of a language built
from the following constructs:

ϕ ::= p (∈ ATM) | ¬ϕ | ϕ1 ∧ ϕ2 | Prevϕ | Futϕ |
Biϕ | Desi(ϕ) | Undesi(ϕ) (10)

where Prevϕ is read as “in the previous state, ϕ was true;”
Futϕ is read as “in some possible future state (excluding the
present), ϕ is true;” Biϕ is read as “agent i believes ϕ;” and
Desi(ϕ) (resp. Undesi(ϕ)) is read as “agent i appraises con-
sequence ϕ (of an event) as desirable (resp. undesirable).” The
eliciting conditions of ‘hope’, ‘fear’, ‘joy’, and ‘distress’ are then
formalized in accordance with the OCC model as the following
macros:

HopeTi (ϕ)
def
= PleasedTi (ϕ) ∧Prospecti(ϕ) (11)

FearTi (ϕ)
def
= DispleasedTi (ϕ) ∧Prospecti(ϕ) (12)

JoyTi (ϕ)
def
= PleasedTi (ϕ) ∧Actuali(ϕ) (13)

DistressTi (ϕ)
def
= DispleasedTi (ϕ) ∧Actuali(ϕ) (14)

PleasedTi (ϕ)
def
= PrcvCnsqi(ϕ) ∧Desi(ϕ) (15)

DispleasedTi (ϕ)
def
= PrcvCnsqi(ϕ) ∧Undesi(ϕ) (16)

PrcvCnsqi(ϕ)
def
= Prospecti(ϕ) ∨Actuali(ϕ) (17)

Prospecti(ϕ)
def
= Futurei(ϕ) ∨Uncertaini(ϕ) (18)

Actuali(ϕ)
def
= NewBiϕ (19)

Futurei(ϕ)
def
= New (Bi¬ϕ ∧BiFutϕ) (20)

Uncertaini(ϕ)
def
= New (¬Biϕ ∧ ¬Bi¬ϕ) (21)

Newϕ
def
= ϕ ∧Prev¬ϕ (22)

(11)–(14) read just as the specifications given in the OCC model,
as quoted earlier, except that (13) and (14) explicate the default fo-
cus on ‘actual’ events. These four emotion types all depend on ei-
ther ‘pleased’ (15) or ‘displeased’ (16), which are triggered when a
consequence (of an event) is perceived that is appraised as desirable
or undesirable, respectively. (17) expresses that two types of con-
sequences of events are considered: prospective and actual ones.
(18) explicates the (intentionally) ambiguous notion of ‘prospect’
as used in the OCC model; namely, to expresses both future and
uncertain (past or present) events. (19) expresses that the percep-
tion of an actual consequence is modeled as a ‘belief update’. (20)
expresses that the perception of a future consequence is modeled as
a ‘belief update’ expressing that something which is not true now
may be true some time in the future. (21) expresses that the per-
ception of an uncertain consequence is modeled as an ‘uncertainty
update’. Finally, (22) expresses that a formula is ‘new’ iff it is true
now but not previously.

With respect to Prev, we say “the previous state” because we
assume a linear past (and a branching future). Note that Actual,
Future, and Uncertain are mutually exclusive if it is assumed
that beliefs are consistent (i.e., ¬(Biϕ ∧ Bi¬ϕ) is valid). With
this assumption the triggering conditions of joy and hope are also
mutually exclusive, and so are those of distress and fear. Note that
this does not mean that an agent cannot experience both fear and
distress; it only ensures that fear and distress cannot both be trig-
gered by the same consequence of an event, because a consequence
is either prospective or actual.

We are now in a position to define a satisfaction relation |= for
agent configurations, such that the eliciting conditions of ‘hope’,

976

‘fear’, ‘joy’, and ‘distress’ can be said to hold in a particular con-
figuration. In order to be able to interpret the Prev construct, it
is assumed that agent configurations contain an additional structure
C−1, storing the belief base, goal base, and plan base of the previ-
ous configuration. So if a transition C −→ C′ is made, where C =
〈i, B,G, P,PG,PR, C−1〉 and C′ = 〈i, B′, G′, P ′,PG,PR, C′

−1〉,
then C′

−1 = 〈B,G, P 〉. So only the previous configuration is
stored, not a complete history. Formulas are then interpreted on
agent configurations as follows.

DEFINITION 8. Let C = 〈i, B,G, P,PG,PR, C−1〉; then
C |= ϕ is specified as follows:

C |= ¬ϕ iff not C |= ϕ

C |= ϕ1 ∧ ϕ2 iff C |= ϕ1 & C |= ϕ2

C |= Biβ iff B |=b β

C |= Desi(κ) iff G |=g κ

C |= Prevϕ iff C−1 |= ϕ

C |= BiFut ξ iff FutC(ξ)

where FutC(ξ) abbreviates, for ξ ∈ K ∪ K:

FutC(κ)
def
= ∃r ∈ PG : κ
 H(r) & B |=b G(r) (23)

FutC(κ)
def
= ∃(π, κ′, r) ∈ P : κ ∈ PostCondC(r) (24)

Below we will explain Definition 8 in detail.
In the interpretation of Prevϕ, writing C−1 |= ϕ is strictly

speaking not allowed, because C−1 is not a proper configuration.
Indeed, C−1 |= ϕ is short for 〈i, B′, G′, P ′,PG,PR,⊥〉 |= ϕ,
where C−1 = 〈B′, G′, P ′〉. This is possible because the name and
reasoning rules are assumed to be static. Although this construc-
tion still fails if Prev is nested (as in C |= PrevPrevBip),
this is not problematic because in this paper no situation will oc-
cur where nesting of Prev is required. Note that such nesting also
fails for B, Des, and Fut. So the kinds of formulas that can be
interpreted on agent configurations is limited with respect to the
grammar introduced in Definition 7, but sufficient for the purposes
of this paper. Indeed, Definition 8 does not allow arbitrary formu-
las to be interpreted on agent configurations, but it does allow all
eliciting conditions of emotions (as presented in Definition 7) to be
interpreted. For example, according to Definition 8 the Fut oper-
ator can only be interpreted inside a B operator, but as can be seen
in Definition 7 Fut is never used outside B, so this restriction does
not pose a problem.

The reasoning behind the FutC construct is as follows. Suppose
κ | β → π is a PG-rule of agent i; this means that the agent
programmer promises that κ can be achieved by executing π in a
state where β holds. Thus (κ | β → π) ∈ PG expresses that
agent i believes that β → 〈π〉κ is (always) true.2 So we would
have that C |= Bi(β → 〈π〉κ) iff (κ | β → π) ∈ PG . Now
Futϕ expresses that ϕ will hold in some possible future, i.e., it
can be seen as an existential quantification over all possible plans
(note that Fut does not incorporate intention). So, replacing 〈π〉
by Fut, we would have that C |= Bi(β → Futκ) iff ∃r ∈ PG :
κ = H(r) & β = G(r). But the guard of the rule is satisfied if
B |=b G(r), and if κ holds after executing π, then so do all its
subgoals. The definition of FutC(κ) above is then the result of
putting together all these ideas.
2Here we use 〈π〉κ to express that κ is a possible result of perform-
ing π, as usual in Dynamic Logic. But note that β → 〈π〉κ will not
appear in our actual object language; it is only used to clarify the
interpretation of BiFut ξ.

As for the second FutC construct, the fact that a plan π is in
the plan base means that the agent is committed to performing the
plan. Thus the agent should believe each postcondition of plan π
to be possibly true after the execution of π. So we would have
that C |= Bi〈π〉κ iff (π, κ′, r) ∈ P and κ ∈ PostCondC(r) (the
function PostCondC will be explained below). Again, we replace
〈π〉 by Fut, obtaining formula (24).

In order to determine which formulas can possibly hold after
the execution of a plan in the plan base, we thus make use of the
PostCondC function. In the following we are actually only in-
terested in a special kind of formula as postcondition, namely in-
verted goal formulas. The reason for this is that we want to find
out whether one plan threatens the goal of another plan. A plan
threatens a goal if an inverted subgoal of the goal is among the
postconditions of the plan. The set of all (sub)goals that can pos-
sibly be threatened is KC = {κ | r ∈ PG, κ
 H(r) }. The
set of inverted subgoals is then KC = {κ | κ ∈ KC }. The
function PostCondC then associates with each PG-rule and PR-
rule a subset of KC indicating which subgoal may be false (“un-
dermined”) after performing the plan of the rule. Its mapping is
thus PostCondC : (PG ∪PR) → 2KC . It should be noted that the
function PostCondC only depends on the reasoning rules of a con-
figuration, which are static, and that it is not assumed to take into
account preconditions at ‘run-time’. Therefore we may assume that
the postconditions of all rules are determined at ‘compile-time’,
thereby making PostCondC a cheap lookup function. The post-
conditions of a rule can be determined by performing some analy-
sis of the rule’s plan, or by letting the agent programmer annotate
each reasoning rule with the (relevant) postconditions.

Of all constructs used in the formalization of eliciting conditions,
only the construct Undes for expressing undesirability is still un-
defined. Here we define undesirability simply as an ‘inverse’ of
desirability:

Undesi(ϕ)
def
= Desi(ϕ) (25)

So the satisfaction of undesirability in a configuration becomes
C |= Undesi(κ) iff G |=g κ (recall that κ = κ). Note that this
definition of undesirability is not unreasonable in light of a restric-
tion to achievement goals.3 In fact, it is noted by OCC that if an
event is desirable to some degree, the absence of that event may be
undesirable to the same degree [16]. Because we have formalized
a desirable event as the satisfaction of a goal formula, the absence
of a desirable event can thus be formalized as the satisfaction of an
inverted goal formula.

Using formulas (11)–(22) plus (25) as macros, it will now follow
that these equivalences hold for all possible agent configurations:

HopeTi (κ) ↔ Desi(κ) ∧New (Bi¬κ ∧BiFutκ) (26)

FearTi (κ) ↔ Desi(κ) ∧New (Bi¬κ ∧BiFutκ) (27)

JoyTi (κ) ↔ Desi(κ) ∧NewBiκ (28)

DistressTi (κ) ↔ Desi(κ) ∧NewBiκ (29)

When comparing (26) and (27) to Definition 7, it may appear that
they miss the ‘uncertainty’ aspect (recall that ‘prospect’ was used
to refer to both current uncertainty and future possibility). How-
ever, because of our closed world assumption on belief bases, un-
certainty in that sense cannot exist; a proposition either follows
from the belief base or it does not. Given (25), it is easy to verify
that (28) and (29) do correspond directly to Definition 7.
3When types of goals other than achievement goals are incorpo-
rated, the framework may have to be extended such that desirability
and undesirability are defined independently.

977

The propositions above are translated to the level of agent con-
figurations as follows. Let C = 〈i, B,G, P,PG,PR, C−1〉 where
C−1 = 〈B′, G′, P ′〉. Then the following equivalences hold:

C |= HopeTi (κ) ⇔ G |=g κ & ¬Fut+C−1
(κ) & Fut+C (κ) (30)

C |= FearTi (κ) ⇔ G |=g κ & ¬Fut+C−1
(κ) & Fut+C (κ) (31)

C |= JoyTi (κ) ⇔ G |=g κ & B′ |=b ¬κ & B |=b κ (32)

C |= DistressTi (κ) ⇔ G |=g κ & B′ |=b ¬κ & B |=b κ (33)

where Fut+C (ξ) is defined for ξ ∈ K ∪ K as follows:

Fut+C (ξ)
def
= (B |=b ¬ξ) & FutC(ξ) (34)

So we have that Fut+C (ξ) iff C |= B¬ξ ∧ BFut ξ, and thus that
C |= New (B¬ξ ∧BFut ξ) iff ¬Fut+C−1

(ξ) & Fut+C (ξ).
In preparation of the next section, we will show two more in-

teresting propositions with respect to ‘hope’ and ‘fear’. Let r be
a PG-rule of configuration C. The following macro then expresses
that hope is triggered with respect to r as soon as the PG-rule be-
comes applicable:

HopeC(r)
def
= ApplicableC(r) & ¬Fut+C−1

(H(r)) (35)

The term ¬Fut+C−1
(H(r)) expresses that rule r cannot have been

applicable in the previous configuration. We re-emphasize that in-
cluding this term ensures that HopeC(r) accurately expresses that
hope is triggered (i.e., it does not necessarily express emotional
experience), as is shown by the following property:

HopeC(r) ⇒ C |= HopeTi (H(r)) (36)

It should be noted that, although we put r in HopeC(r), the object
of the triggered hope is actually the (sub)goal that can be achieved
by applying the PG-rule (and executing its plan).

Finally, we have that ‘fear’ is triggered as soon the plan base
contains two conflicting plans, in the sense that a postcondition of
one plan contradicts the goal of the other plan. To express this, we
define the following macro:

FearC(π, κ)
def
= ¬Fut+C−1

(κ) & ∃(π1, κ1, r1), (π2, κ2, r2) ∈ P :

κ ∈ PostCondC(r2) & κ
 κ1 & π = π2 (37)

Note again the use of the term ¬Fut+C−1
(κ) to ensure that what

is expressed is a triggering condition. Thus FearC(π, κ) expresses
that fear is triggered because plan π threatens (sub)goal κ (by promis-
ing κ) of another plan. It should be noted that it is possible that
(π1, κ1, r1) = (π2, κ2, r2). This does not necessarily mean that
π1 is a ‘bad’ plan; it might simply be the case that π1 is not guar-
anteed to succeed in achieving its goal. The fact that FearC(π, κ)
accurately expresses that fear is triggered is shown by the following
property:

FearC(π, κ) ⇒ C |= FearTi (κ) (38)

We now have all ingredients necessary to formally specify prin-
cipled constraints on the deliberation cycle based on the emotion
types ‘hope’, ‘fear’, ‘joy’, and ‘distress’.

4. EMOTION-CONTROLLED
DELIBERATION

In this section, we will specify emotion-inspired constraints in
order to limit the choices in applying reasoning rules and execut-
ing plans. In psychological literature, affective feelings (includ-
ing emotions) are often described as informing an individual about

his or her performance. In particular, when one is task-oriented,
positive emotions function as a “go” signal for pursuing currently
accessible inclinations, whereas negative emotions function as a
“stop” signal to allow for seeking alternatives [3]. This view of
emotions as “go” and “stop” signals can be used to decide when to
generate a new plan (“go ahead and do it”), when to revise a plan
(“stop and reconsider”), which plan to choose for execution (“do
what is making you feel good”), and when to stop a plan’s execu-
tion (“stop when you don’t feel good about what you’re doing”).
Indeed, we will now show how ‘hope’, ‘fear’, ‘joy’, and ‘distress’
can be used as the described signals, respectively, to constrain to
deliberation cycle.

4.1 Hope
The generation of new plans is constrained by only allowing a

PG-rule to be applied when hope is triggered with respect to the
head of the rule. This is done by replacing Gen , as used in Def-
inition 6, by Gen ′. The transition rule for Gen ′ is specified as
follows:

HopeC(r)

C Gen′(r)
=⇒ C′

(39)

where C′ is updated as in rule (8). Recall from formula (35) that
HopeC(r) includes ApplicableC(r), which was the condition for
Gen used in rule (8). What the condition HopeC(r) adds to the
original (ad hoc) condition is that previously applicable PG-rules
are not reconsidered for application.

4.2 Fear
The revision of existing plans is restricted by only allowing a

PR-rule to be applied when fear is triggered with respect to a pos-
sible conflict between two plans, in the sense of formula (37). This
is done by replacing Rev , as used in Definition 6, by Rev ′. The
transition rule for Rev ′ is specified as follows:

∃π, κ : FearC(π, κ) & ApplicableC(r, π)

C Rev′(r)
=⇒ C′′

(40)

where C′′ is updated as in rule (8). The condition that fear must
have been triggered for a PR-rule to be applied is different from
the condition used in 2APL [5]. In 2APL, the deliberation cycle
only tries to find applicable PR-rules when an action of a plan has
failed. In 2APL’s precursor 3APL, PR-rules were applied whenever
applicable, and applicable PR-rules were sought each time a single
action had been executed. The constraint presented above takes a
middle road by allowing threatening plans to be revised as soon as
a possible conflict is perceived.

It may be interesting to note that it is not guaranteed that a re-
vised plan is any less threatening. So after plan revision, a new fear
may immediately be triggered, thus allowing for multiple succes-
sive revisions, until a non-threatening plan has been found.

4.3 Joy
The nondeterministic choice between which plan to execute can

be constrained by specifying a preference on the plans in the plan
base. Specifically, the “go” signal given by joy can make an agent
prefer to execute plans that are going well, i.e., for which subgoals
are being achieved. This is done by replacing ExecutePlan , as
used in Definition 6, by ExecutePlan ′. ExecutePlan ′ is defined
as follows:

ExecutePlan ′ def
= Do(π) (41)

where (π, κ, r) = min≺C P (ties broken arbitrarily). The prefer-
ence relation ≺C is a strict partial order on plan base P of configu-

978

ration C, defined as:

≺C = { (π, κ, r) ∈ P | JoyC(κ) }×{ (π, κ, r) ∈ P | ¬JoyC(κ) }
(42)

where JoyC(κ)
def
= ∃κ′ : κ′
 κ & C |= JoyT(κ′). So ≺C di-

vides the plan base in two; those plans that are have made progress
and those that have not. ExecutePlan ′ then chooses the plan that
has made the most progress. Obviously, this constraint still allows
for nondeterminism, because ≺C is only a partial order. But there
are ways to extend this preference order on plans, for example by
taking into account the number of subgoals having been achieved.
Furthermore, ≺C could be made to take into account goal achieve-
ments over a longer history than just the previous state.

4.4 Distress
The interleaving of the execution of plans is restricted by speci-

fying that if a plan is executed, it is not interleaved unless it triggers
distress. Thus distress will interrupt the agent’s ‘attention’ from the
current plan and allow it to consider, e.g., plan revision or execut-
ing another plan. This is accomplished by interleaving each plan
with tests for distress. So Do, as used in Definition 6, is replaced
by Do′, which is defined as follows:

Do′(α) def
= Do(α) (43)

Do′(α;π) def
= Do(α); (DistressC? + (¬DistressC?;Do′(π)))

(44)

where DistressC
def
= ∃κ : C |= DistressT(κ). Observe that “if ϕ

then π1 else π2” is a common abbreviation of (ϕ?;π1)+(¬ϕ?;π2).
So Do′(π) expands to π interleaved with ¬DistressC? tests. The
triggering of distress then effectively functions as a “stop” signal
with respect to the execution of a plan.

4.5 Discussion
To summarize, we have constrained the deliberation cycle such

that (1) PG-rules are only applied to goals that have triggered hope,
(2) PR-rules are only applied to plans that have triggered fear, (3)
plans that have triggered joy are preferred for execution, and (4)
plan execution is interrupted as soon as distress is triggered. It will
be clear that these constraints do not resolve all nondeterminism in
the specification of Reason_Act in Definition 6. Specifically, the
following nondeterminism remains:

• When different PG-rules can be applied (in the sense of rule
(39)), it is not specified how many of them are to be applied
and in which order.

• When different PR-rules can be applied (in the sense of rule
(40)), it is not specified how many of them are to be applied
and in which order.

• The order ≺C imposed on the plan base by joy may not result
in a unique most preferred plan. As noted before ≺C can be
extended to reduce nondeterministic choices.

• The triggering of distress interrupts the execution of a plan,
but it is not specified what should happen after that. The
current construction makes it possible for the agent to switch
to another plan, but it is also allowed to continue with the
same plan.

• Although ApplyPGrule∗;ApplyPRrule∗;ExecutePlan∗ in
Definition 6 appears to suggest the order “first apply PG-
rules, then apply PR-rules, then execute plans,” the use of
∗ effectively allows any order for performing ApplyPGrule ,
ApplyPRrule , and ExecutePlan .

• It is not specified how sensing of the environment is inter-
leaved with reasoning and acting.

For future work, we will investigate principled ways to resolve this
remaining nondeterminism. In particular, we will study other types
of emotions for their suitability to control agent deliberation.

5. RELATED WORK
In this section we compare the presented work with related ap-

proaches at using emotions in reasoning.
Dastani & Meyer [6] have proposed to constrain the delibera-

tion cycle of 2APL using heuristics inspired by the emotions hap-
piness, sadness, fear, and anger, as described in the psychological
model of emotions of Oatley & Jenkins [14]. These heuristics were
then added on top of the deliberation cycle of 2APL. However, the
existing 2APL deliberation cycle itself, which is based on ad hoc
choices, was not changed in a principled way (i.e., the emotion-
inspired heuristics were only used to extend the deliberation cycle).
In contrast, our approach starts with a clean slate by assuming com-
plete nondeterminism. Then we have added several constraints in
accordance with the common psychological view of emotions as
“go” and “stop” signals in task-oriented situations. Note that it is
our intention that any remaining nondeterminism be resolved by
investigating and adding more principled (possibly emotion-based)
constraints.

Steunebrink et al. [19] have investigated how the options of an
agent can be ordered and limited using the notion of action ten-
dency. In psychological literature, action tendency is used to de-
scribe states of readiness to execute a given kind of action to achieve
a certain end state [8]. For example, anger will subside once the
removal of the obstruction that caused the anger is perceived; so
anger will give one the tendency to perform actions that remove
the obstruction. Steunebrink et al. formalized this psychological
notion of action tendency in a dynamic doxastic logic such that
the possible actions of an agents could be ordered by action ten-
dency, thereby reducing possible nondeterminism in action selec-
tion. However, it was not shown how action tendencies could be
used in actual agent implementations (only a logical analysis of
the concept was provided). Moreover, Steunebrink et al. [19] only
considered negative emotions.

Adam [1] proposed a formalization of the OCC model in which
also the effects of emotions on behavior were considered. In par-
ticular, seven coping strategies were defined for several negative
event-based emotions (distress, disappointment, fear,
fears-confirmed, pity, and resentment). Some coping strategies
(e.g., denial, resign) change the beliefs or desires of an agent such
that the triggering conditions for the negative emotion cease to
hold. Other coping strategies (e.g., mental disengagement, vent-
ing) lead to the adoption of intentions to bring about new positive
emotions that “divert the individual from the current negative one”
[1]. However, as in [19], only a logical analysis was provided and
only several negative emotions were considered.

Gratch & Marsella [9] have been working on a computational
framework for modeling emotions inspired by the OCC model,
among others. An implementation, named EMA, is used for social
training applications. Like Adam, their framework incorporates a
number of coping strategies. However, few formal details of how
emotions affect the reasoning of an agent are provided, so it is hard
to assess how much of the behavior of an EMA agent results from
ad hoc choices or emotion-inspired principles.

979

6. CONCLUSION AND FUTURE WORK
In this paper we have shown how a completely nondeterminis-

tic sense–reason–act cycle can be constrained in a principled way
by using emotions. This was done by first formalizing the elicit-
ing conditions of four emotions types (hope, fear, joy, and distress)
from the psychological OCC model of human emotions. This for-
malization was then grounded in 2APL, such that one could reason
about when emotions are triggered for a 2APL agent. The con-
ditions giving rise to hope, fear, joy, or distress were then used as
conditions for applying reasoning rules and determining which plan
to execute and when to interrupt execution.

It should be noted that in the presented approach, emotions are
never stored in the configuration of an agent. They only function
as labels of special situations such that they can be used to guide
design principles. So the constraints presented in this paper could
in principle be specified without referring to emotions. However,
because these constraints give rise to properties that are in line with
psychological models of human emotions, it makes good sense to
use emotional labels.

In this paper we have focused on just four emotion types. In
future work, we will investigate how remaining nondeterminism
can be further reduced by introducing more emotions.

7. REFERENCES
[1] C. Adam. The Emotions: From Psychological Theories to

Logical Formalization and Implementation in a BDI Agent.
PhD thesis, Institut Nat. Polytechnique de Toulouse, 2007.

[2] R. H. Bordini, M. Wooldridge, and J. F. Hübner.
Programming Multi-Agent Systems in AgentSpeak using
Jason. Wiley Series in Agent Technology. John Wiley &
Sons, 2007.

[3] G. L. Clore, R. S. Wyer, B. Dienes, K. Gasper, C. Gohm, and
L. Isbell. Affective feelings as feedback: Some cognitive
consequences. In L. L. Martin and G. L. Clore, editors,
Theories of Mood and Cognition: A User’s Guidebook,
chapter 2, pages 27–62. Lawrence Erlbaum Associates, 2001.

[4] A. R. Damasio. Descartes’ Error: Emotion, Reason and the
Human Brain. Grosset/Putnam, New York, 1994.

[5] M. Dastani. 2APL: A practical agent programming language.
International Journal of Autonomous Agents and
Multi-Agent Systems (JAAMAS), 16(3):214–248, 2008.

[6] M. Dastani and J.-J. C. Meyer. Programming agents with
emotions. In Proceedings of the 17th European Conference
on Artificial Intelligence (ECAI’06), pages 215–219, 2006.

[7] P. Ekman and R. J. Davidson, editors. The Nature of
Emotion: Fundamental Questions. Series in Affective
Science. Oxford University Press, 1994.

[8] N. H. Frijda. The Emotions. Studies in Emotion and Social
Interaction. Cambridge University Press, 1987.

[9] J. Gratch and S. Marsella. A domain-independent framework
for modeling emotions. Journal of Cognitive Systems
Research, 5(4):269–306, 2004.

[10] J. J. Gross and R. A. Thompson. Emotion regulation:
Conceptual foundations. In J. J. Gross, editor, Handbook of
Emotion Regulation. Guilford Press, 2007.

[11] K. Hindriks. Modules as policy-based intentions: Modular
agent programming in GOAL. In Proceedings of
ProMAS’07, volume 4908. Springer, 2008.

[12] R. S. Lazarus. Emotion and Adaptation. Oxford University
Press, 1994.

[13] J. E. LeDoux. The Emotional Brain: Mysterious
Underpinnings of Emotional Life. Simon & Schuster, 1996.

[14] K. Oatley and J. M. Jenkins. Understanding Emotions.
Blackwell Publishing, Oxford, UK, 1996.

[15] A. Ortony and G. L. Clore, April–June 2009. Personal
communication.

[16] A. Ortony, G. L. Clore, and A. Collins. The Cognitive
Structure of Emotions. Cambridge University Press,
Cambridge, UK, 1988.

[17] A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: A BDI
reasoning engine. In R. H. Bordini, M. Dastani, J. Dix, and
A. E. F. Seghrouchni, editors, Multi-Agent Programming:
Languages, Platforms and Applications, pages 149–174.
Springer, 2005.

[18] K. R. Scherer, A. Schorr, and T. Johnstone, editors. Appraisal
Processes in Emotion: Theory, Methods, Research. Series in
Affective Science. Oxford University Press, 2001.

[19] B. R. Steunebrink, M. Dastani, and J.-J. C. Meyer. A formal
model of emotion-based action tendency for intelligent
agents. In Proceedings of the 14th Portuguese Conference on
Artificial Intelligence (EPIA’09). Springer, 2009.

[20] M. Winikoff. JACKTM intelligent agents: An industrial
strength platform. In R. H. Bordini, M. Dastani, J. Dix, and
A. E. F. Seghrouchni, editors, Multi-Agent Programming:
Languages, Platforms and Applications, pages 175–193.
Springer, 2005.

APPENDIX
A. PROOFS

PROOF (26)–(29). According to Definition 7, HopeTi (κ) is
equivalent to Desi(κ) ∧ (Futurei(κ) ∨ Uncertaini(κ)). But
Uncertaini(κ) implies ¬Biκ ∧ ¬Bi¬κ, which is a contradic-
tion because of our closed world assumption. So HopeTi (κ) is
equivalent to Desi(κ) ∧ New (Bi¬κ ∧ BiFutκ). The same
reasoning holds for FearTi (κ). The properties for JoyTi (κ) and
DistressTi (κ) are nothing but the macros of Definition 7
expanded.

PROOF (30)–(33). These properties are direct rewrites of (26)–
(29) (see above). It should be noted that the term New (Bi¬ξ ∧
BiFut ξ) in property (26) and (27) expands to Bi¬ξ∧BiFut ξ∧
Prev¬(Bi¬ξ ∧BiFut ξ). Interpreting this formula in a config-
uration C yields C |= Bi¬ξ ∧BiFut ξ and C |= Prev¬(Bi¬ξ ∧
BiFut ξ), i.e., C−1 �|= Bi¬ξ ∧ BiFut ξ. By formula (34) this is
equivalent to Fut+C (κ) & ¬Fut+C−1

(κ).

PROOF (36). To obtain this property it suffices to show that
ApplicableC(κ | β → π) implies Fut+C (κ) and G |=g κ.
ApplicableC(κ | β → π) expands to (κ | β → π) ∈ PG & G |=g

κ&B |=b (β∧¬κ), while Fut+C (κ) expands to B |=b ¬κ& ∃r ∈
PG : κ
 H(r) & B |=b G(r). Assume ApplicableC(κ | β →
π). Then immediately we have G |=g κ and B |=b ¬κ. But be-
cause (κ | β → π) ∈ PG and κ
 κ, we have that ∃r ∈ PG : κ

H(r). Moreover, B |=b G(r) is now the same as B |=b β, which
we have by assumption. So indeed ApplicableC(κ | β → π) im-
plies Fut+C (κ) and G |=g κ.

PROOF (38). To obtain this property it suffices to show that
∃(π1, κ1, r1), (π2, κ2, r2) ∈ P : κ ∈ PostCondC(r2) & κ
 κ1

implies Fut+C (κ) and G |=g κ. Assume the antecedent above.
Then ∃(π, κ′, r) ∈ P : κ ∈ PostCondC(r), which is equiv-
alent to Fut+C (κ). It was assumed (see below Definition 4) that
(π1, κ1, r1) ∈ P implies G |=g κ1. Because κ
 κ1, also G |=g

κ. So indeed ∃(π1, κ1, r1), (π2, κ2, r2) ∈ P : κ ∈ PostCondC(r2)
& κ
 κ1 implies Fut+C (κ) and G |=g κ.

980

